I was playing around with the idea of presenting fractions in the same way as negative numbers. Instead of 1/x, you'd write /x. Just like instead of 0x, you write x. And since multiplication with singleletter symbols is often annotated with putting the symbols next to each other, marking the inverse with /x looks quite natural: A x /B = A/B, 9 x /7 = 9/7.
It also makes you think of the inverse in less magical terms. Consider the addition rule for fractions:
A C AD BC AD + BC
 +  =  +  = 
B D BD BD BD
There's some crazy magic happening right there. The literal meaning is (A x D x 1/B x 1/D) + (C x B x 1/D x 1/B), but you wouldn't know from looking at that formula. And it gets even more confusing when you start multiplying and dividing with fractions. Think about the following for a moment:
A C AD
 /  = 
B D BC
Right?
In linear notation with /B and /D and suchlike, this all actually sort of makes sense in a nonmagical way. Here's the first of the above two examples (with intermediate phases written out):
(A x /B) + (C x /D)
= [1 x (A x /B)] + [1 x (C x /D)]
= [(D x /D) x (A x /B)] + [(B x /B) x (C x /D)]
= [(A x D) x (/B x /D)] + [(B x C) x (/B x /D)]
= (/B x /D) x [(A x D) + (B x C)]
[here's where you go: "oh right, /7 x /4 = /28", analogous to 7 x 4 = 28]
And the second one:
A x /B x /(C x /D)
= A x /B x /C x D
= (A x D) x (/B x /C)
Note the similarity with addition:
A + B + (C + D)
= A + B + C + D
= (A + D) + (B + C)
Now, you might notice that there is a bit of magic there. How does /(C x /D) magically turn into (/C x D)? Or (C + D) to (C + D) for that matter. Let's find out! Here's how it works:
/(C x /D)
= 1 x /(C x /D)
= [(/C x D) x /(/C x D)] x /(C x /D)
= (/C x D) x /(/C x C x D x /D)
= (/C x D) x /(1 x 1)
= (/C x D) x /1  Remember the axioms 1 x N = N and N x /N = 1. Since 1 x /1 = 1 we get /1 = 1.
= (/C x D) x 1 = (/C x D)
For the (C + D) case, replace / with , x with + and 1 with 0.
And there you have it, my small thought experiment. And derivations for some basic arithmetic rules. I kinda like how breaking the magic bits down into the basic field axioms makes things clearer.
[edit]
Why is /A x /B = /(A x B)?
/(A x B) x (A x B) = 1
1 x (/A x /B) = (/A x /B)
/(A x B) x (A x B) x (/A x /B) = (/A x /B)
/(A x B) x (A x /A) x (B x /B) = (/A x /B)
/(A x B) x 1 x 1 = (/A x /B)
/(A x B) = (/A x /B)
art with code
20120127
Subscribe to:
Post Comments (Atom)
About Me

Ilmari Heikkinen
 Built art installations, web sites, graphics libraries, web browsers, mobile apps, desktop apps, media player themes, many nutty prototypes